Chem. Ber. 119, 2895-2899 (1986)

Zur Chemie CO- und CS-funktioneller Pentaazaspiro[4.5]decane: Ringöffnungs- und Ringverengungsreaktionen

Heike Heitz, Gerhard Herrmann und Georg Süß-Fink*

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstraße 30, D-8580 Bayreuth

Eingegangen am 11. April 1986

On the Chemistry of CO and CS Functional Pentaazaspiro[4.5]decanes: Ring Opening and Ring Contraction Reactions

[4.5]-Spiropentaazacycles 1-5 containing CO or CS functions react with methylenetriphenylphosphorane, depending upon the ring position of the CO and CS groups, either within the scheme of a Wittig reaction (6, 7) or under opening of the six-membered ring to give cyclic orthoamides (8, 9). With trimethyloxonium tetrafluoroborate, in addition to the replacement of sulfur against oxygen, the contraction of the ring system to give a [4.4]spirotetraazacycle 10 is observed.

[4.5]-Spiroheterocyclen mit CO-NR-Sequenz sind durch eine verblüffend einfache katalytische Synthese aus Alkylisocyanaten zugänglich^{1,2)}. Durch thermische Reaktion mit P₄S₁₀ lassen sich die CO-Gruppen in diesen Systemen sukzessive in CS-Gruppen überführen³⁾. Im folgenden berichten wir über die Reaktivität der Reihe der Methylderivate 1-5 gegenüber dem Nucleophil (C₆H₃)₃PCH₂ und gegenüber dem Elektrophil [(CH₃)₃O][BF₄].

Die Spiroheterocyclen 1 und 2 setzen sich mit Methylentriphenylphosphoran im Sinne einer Wittig-Reaktion^{4,5)} unter Bildung von $(C_6H_{5})_3$ PO zu den Methylenverbindungen 6 und 7 um: bei 1 wird die Position C-2, bei 2 dagegen die Position C-4 angegriffen. Die Verbindung 3 reagiert analog unter Bildung von $(C_6H_3)_3$ PS und Einführung der Methylengruppe in Position C-4; dabei entsteht ebenfalls 7. Im Gegensatz dazu reagieren 4 und 5 an der Thiocarbonyl-Position C-9 unter Ringöffnung: Neben $(C_6H_5)_3$ PO spaltet sich hydrolytisch das N-8-C-9-Fragment als Methylisothiocyanat ab; dabei entstehen die cyclischen Orthoamide 8 und 9.

Die Produkte 6-9 fallen nach der dünnschichtchromatographischen Isolierung als kristalline Feststoffe an: 6 ist farblos, während 7-9 hellgelb sind. Die Massenspektren zeigen in allen Fällen die Molekülionen; charakteristische Fragmentierungen sind die Abspaltungen von CH₃NCO bei 6 bzw. CH₃NCS bei 7 und in beiden Fällen von CH₂CNCH₃, sowie von CH₃C(O)NCH₃ bei 8 bzw. CH₃C(S)NCH₃ bei 9 und in beiden Fällen von CH₃NCS.

Die Struktur der Spiroheterocyclen 6 und 7 ergibt sich aus den Kernresonanzspektren: Das intakte spirocyclische System gibt sich in 13 C-NMR-Spektren durch die charakteristische Resonanz des quartären Kohlenstoffatoms C-5 bei δ 87.8 bzw. 90.5 zu erkennen. Für 6 werden drei CO-Signale, für 7 zwei CO- und ein CS-Signal beobachtet. Sowohl bei 6 als auch bei 7 finden sich nur vier 13 C-Signale für die fünf Methylgruppen; in Einklang damit zeigen die 14 -NMR-Spektren von 6 und 7 ein 1:1:1:2-Signalmuster für die Resonanzen der Methylprotonen. Diese Äquivalenz der Methylgruppen an N-8 und N-10 beweist, daß bei 6 und 7 der Sechsring gegenüber der jeweiligen Ausgangsverbindung unverändert geblieben ist. In 7 ist die CH₂-Gruppe an das Kohlenstoffatom C-4 gebunden, was in den deutlich verschiedenen ¹H-NMR-Signalen der Methylenprotonen zum Ausdruck kommt. Im Gegensatz dazu zeigen die Methylenprotonen in 6 im ¹H-NMR-Spektrum ein Singulett; die Methylengruppe muß deshalb an das symmetrisch substituierte Kohlenstoffatom C-2 gebunden sein.

Bei den Verbindungen 8 und 9 ist die ¹³C-Kernresonanz des quartären Kohlenstoffatoms C-5 auf Werte über 100 ppm verschoben, was auf eine Öffnung des Spirosystems hinweist. Die Öffnung des Sechsrings findet ihren Niederschlag in den fünf Methylsignalen sowohl in den ¹³C- als auch in den ¹H-NMR-Spektren. Die ¹³C-Signale bei δ 19.0 bzw. 18.9 sowie die entsprechenden ¹H-Signale bei δ 2.32 bzw. 2.25 sprechen für eine C-gebundene Methyl-gruppe. Ein breites ¹H-Signal bei δ 4.60 bzw. 3.65 und die Dublettstruktur eines Methyl-Protonensignals (δ 2.85 bzw. 3.09) zeigen eine NHCH₃-Gruppierung an.

Die unerwartete Öffnung des Sechsrings in 4 und 5 bei der Umsetzung mit $(C_6H_3)_3PCH_2$ wird vermutlich durch einen nucleophilen Angriff der Methylengruppe an dem Carbonyl-

Chem. Ber. 119 (1986)

		<u>6</u>	1	<u>§</u>	<u>9</u>	<u>10</u>
<u>1R</u> 4)	v(NH)			3296s	3242s	
	v(CO)	1741s, 1703s, 1655s	1708s, 1670s	1675a		
	v(CC)	1665s(sh)	1650m(sh)			
	v(C\$)		1160m, 1132m	1197m, 1156w	1175w, 1153m, 1127w	1468vs, 1435m
	v(CN)	1062m, 1034s	1070m, 1015m, 970s	1072m, 983m	1060s, 1011w, 968w	1072m, 1040w
<u>"н-жи</u> са)	ó(CH₃)	2.65(s,3), 2.71(s,6) 3.01(s,3), 3.23(s,3)	2.66(s,6), 2.96(s,3) 3.26(s,3), 3.35(s,3)	2.32(s,3), 2.85(d,3) 3.22(s,3), 3.47(s,3) 3.70(s,3)	2.25(s,3), 3.09(d,3) 3.14(s,3), 3.37(s,3) 3.49(s,3)	3.10(s,6) 3.60(s,6)
	δ(CH ,)	4.41(s,2)	4.51(d,1), 4.62(d,1)			
	6 (NH)			4.60(s,br,1)	3.65(s,br,1)	
<u>13C-MMR</u> ()	&(CH3)	23.5, 26.5, 28.6 29.3	27.6, 28.6, 29.5 30.4	19.0, 27.5, 31.3 32.4, 36.3	18.9, 32.3, 32.5 33.0, 41.4	30.8, 33.7
	d(CH ₂)	84.8	87.4			
	6(C)	87.8	90,5	118.5	118.3	96.3
	ð(C0)	143.2, 150.7, 154.5	143.1, 150.2	156.6		
	ð(CS)		179.2	132.7, 162.1	132.5, 163.2, 184.2	182.0, 191.5

Tab. 1. IR- und NMR-Daten der Verbindungen 6-10

^{a)} KBr-Preßlinge, Werte in cm⁻¹. – ^{b)} CDCl₃-Lösung, 25°C, Werte in ppm. – ^{c)} CDCl₃-Lösung, ${}^{1}H{}-1000$ Hz-breitbandentkoppelt, bei 6 und 7 30°C, bei 8–10–20°C, Werte in ppm.

bzw. Thiocarbonylkohlenstoff C-7 eingeleitet. Nach Bruch der Bindung zwischen C-7 und N-8 werden vermutlich (C_6H_5)₃PO und CH₃NCS hydrolytisch abgespalten, was zu 8 und 9 führt; die Hydrolyse findet auf dem zur Chromatographie verwendeten Kieselgel statt. Erhärtet wird die Annahme eines nucleophilen Angriffs von (C_6H_5)₃PCH₂ dadurch, daß sich 9 aus 5 auch mit LiCH₃ synthetisieren läßt.

Bei den Verbindungen 8 und 9 handelt es sich um cyclische, halbseitige Orthoamide der Monothiooxalsäure. Von den Oxalsäureabkömmlingen sind bisher nur halbseitige Orthoester⁶, beidseitige Orthoamidester^{6,7} und beidseitige Orthothioester⁸ bekannt.

Mit Trimethyloxonium-tetrafluoroborat reagieren nur die Spiroheterocyclen 4 und 5, die im Sechsring Thiocarbonylfunktionen enthalten. Die erwarteten Methylierungsprodukte lassen sich allerdings nicht isolieren, die Extraktion mit Methanol führt zu dem jeweils schwefelärmeren Produkt 3 bzw. 4. Im Fall des Tetrathion-Derivats 5 entsteht außerdem unter Ringverengung der [4.4]-Spirotetraazacyclus 10. Bei dieser Verbindung handelt es sich um das Schwefelhomologe des seit 1897 bekannten⁹¹ 1,3,7,9-Tetramethyl-1,3,7,9-tetraazaspiro[4.4]nonan-2,4,6,8-tetrons ("Tetramethyldihydantoin"), für das 1911 erstmals eine spirocyclische Struktur vorgeschlagen wurde¹⁰.

Das Massenspektrum von 10 zeigt neben dem Molekülion m/z 304 typische Fragmente bei m/z 231, 202 und 158, die durch Abspaltung von CH₃NCS-, CH₃N- und CS-Bruchstücke entstehen. Die Struktur von 10 folgt aus den Kernresonanzspektren: Im ¹³C-NMR-Spektrum gibt sich das spiro-Kohlenstoffatom C-5 durch ein Signal bei δ 96.3 zu erkennen. Für die vier Methylgruppen finden sich im ¹³C-NMR-Spektrum wie auch im ¹H-NMR-Spektrum nur zwei intensitätsgleiche Signale; in Einklang damit ergeben die vier Thiocarbonyl-Kohlenstoffkerne nur zwei ¹³C-Signale.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für Bereitstellung von Sachmitteln, sowie Herrn Professor Dr. Max Herberhold, Universität Bayreuth, für die Überlassung von Institutsmitteln.

Experimenteller Teil

Alle Reaktionen wurden unter gereinigtem Stickstoff als Schutzgas durchgeführt; die verwendeten Lösungsmittel waren absolut und N₂-gesättigt. Zur präparativen Dünnschichtchromatographie wurde Kieselgel Merck TLC 60 GF₂₅₄ verwendet. – IR-Spektren: Beckman 4240 und Perkin-Elmer 983 G. – NMR-Spektren: Jeol FX 90 Q (¹³C, ¹H), Bruker Cryospec WM 250 (¹H). – MS: Varian MAT 312 (70 eV). – Elementaranalysen: Mikroanalytisches Labor Pascher, Bonn.

Ausgangsverbindungen: Trimethyloxonium-tetrafluoroborat wurde nach Literaturmethoden dargestellt¹¹). Die Spiroheterocyclen 1-5 wurden nach der Originalvorschrift^{2,3}) synthetisiert; abweichend davon wurde gefunden, daß 3 und 4 unter leicht modifizierten Bedingungen (150°C, 20 h) in erheblich besseren Ausbeuten (43 bzw. 49%) erhalten werden. Methylentriphenylphosphoran wurde im Eintopfverfahren analog zu der Literaturvorschrift¹² synthetisiert: Zu einer Lösung von 357 mg (1.00 mmol) [(C₆H₃)₃PCH₃]Br in 40 ml 1,2-Dimethoxyethan wurden 112 mg (1.00 mmol) KOC(CH₃)₃ und 10 ml Tetrahydrofuran zugesetzt; die Lösung wurde nach 15 min. Rühren bei 20°C ohne Isolierung eingesetzt.

Darstellung der Verbindungen 6 und 7: Die oben beschriebene $(C_6H_5)_3PCH_2$ -Lösung wurde mit 100 mg (0.37 bzw. 0.35 mmol) 1 bzw. 2 versetzt und 100 bzw. 16 h bei 20°C gerührt. Danach wurde der ausgefallene Feststoff durch Filtration über Filterflocken entfernt. Das Filtrat wurde zur Trockne gebracht und der Rückstand zweimal dünnschichtchromatographisch getrennt. (6: $C_6H_{12}/CH_2Cl_2/(C_2H_5)_2O$ 2:4:4, R_F 0.62; C_6H_{12}/THF 6:4, R_F 0.50; 7: C_6H_{12}/THF 6:4, R_F 0.53; $C_6H_{12}/THF/CH_2Cl_2$ 6.4:2.7:0.9, R_F 0.50). Die jeweilige Hauptbande wurde mit CH_2Cl_2 und mit $(C_2H_5)_2O$ eluiert, beim Konzentrieren fiel 6 bzw. 7 in kristalliner Form an.

1,3,6,8,10-Pentamethyl-2-methylen-1,3,6,8,10-pentaazaspiro[4.5]decan-4,7,9-trion (6): Ausb. 27 mg (28%), Schmp. 105 - 106 °C.

C₁₁H₁₇N₅O₃ Ber. 267.1331 Gef. 267.1336 (MS)

1,3,6,8,10-Pentamethyl-4-methylen-2-thioxo-1,3,6,8,10-pentaazaspiro[4.5]decan-7,9-dion (7): Ausb. 41 mg (42%), Schmp. 173 °C.

 $C_{11}H_{17}N_5O_2S$ (283.4) Ber. C 46.62 H 6.06 N 24.72 Gef. C 46.72 H 6.08 N 24.70

Bei der analogen Reaktion von 3 (140 mg, 0.46 mmol, 150 h) fiel 7 nach einmaliger dünnschichtchromatographischer Trennung ($C_6H_{12}/CH_2Cl_2/(C_2H_5)_2O$ 2:4:4, R_F 0.55) in reiner Form an. Ausb. 29 mg (22%).

Darstellung der Verbindungen 8 und 9: Der einfachen bzw. vierfachen Menge der oben beschriebenen (C₆H₃)₃PCH₂-Lösung wurden 100 mg (0.315 bzw. 0.300 mmol) 4 bzw. 5 zugesetzt. Nach 18- bzw. 64stdg. Rühren bei 20 °C wurde über Filterflocken filtriert; die filtrierte Lösung wurde zur Trockne eingeengt und zweimal dünnschichtchromatographisch getrennt (8: C₆H₁₂/THF 6:4, R_F 0.61; CH₂Cl₂/CH₃CO₂C₂H₅ 1:1, R_F 0.42; 9: C₆H₁₂/CH₂Cl₂/(C₂H₃)₂O 2:4:4, R_F 0.34; C₆H₁₂/CH₃CO₂C₂H₅ 1:1, R_F 0.26). Die jeweilige Hauptbande wurde mit CH₂Cl₂ und (C₂H₃)₂O eluiert; beim Einengen der Lösung fiel 8 bzw. 9 in kristalliner Form an.

5-(Acetylmethylamino)-1,3-dimethyl-5-(methylamino)-2,4-imidazolidindithion (8): Ausb. 12 mg (15%), Schmp. 178 °C.

 $\begin{array}{cccc} C_{9}H_{16}N_{4}OS_{2} & \text{Ber.} & 260.0765 & \text{Gef.} & 260.0777 & (MS) \\ & & & \text{Ber.} & C \; 41.51 & \text{H} \; 6.21 \; \; S \; 24.62 & \text{Gef.} \; \; C \; 41.95 \; \; \text{H} \; 6.14 \; \; \text{S} \; 22.9 \\ \end{array}$

1,3-Dimethyl-5-(methylamino)-5-[methyl(thioacetyl)amino]-2,4-imidazolidindithion (9): Ausb. 25 mg (30%), Schmp. 188°C.

C₉H₁₆N₄S₃ Ber. 276.0537 Gef. 276.0540 (MS)

Alternativ war 9 aus 5 auch mit Methyllithium zugänglich: Zu einer Lösung von 167 mg (0.50 mmol) 5 in 50 ml 1,2-Dimethoxyethan und 10 ml Tetrahydrofuran wurde 1 ml einer 1 M LiCH₁-Lösung zugegeben. Nach 64stdg. Rühren bei 20°C wurde 1 ml Wasser zugesetzt und die Mischung zur Trockne gebracht. Aus dem Rückstand ließ sich 9 dünnschichtchromatographisch (C₆H₁₂/CH₂Cl₂/(C₂H₅)₂O 2:4:4, R_F 0.45) isolieren. Ausb. 120 mg (87%).

1,3,7,9-Tetramethyl-1,3,7,9-tetraazaspiro[4.4]nonan-2,4,6,8-tetrathion (10): Zu einer Lösung von 333 mg (1.00 mmol) 5 in 50 ml CH₂Cl₂ wurden 148 mg (1.00 mmol) [(CH₃)₃O][BF₄] zugegeben. Nach 1stdg. Rühren bei 20°C wurde das Lösungsmittel i. Vak. abgezogen; das hinterbleibende gelbe Substanzgemisch wurde in 50 ml Methanol aufgenommen. Die bei - 30°C auskristallisierte gelbe Substanz wurde isoliert und dünnschichtchromatographisch getrennt ($C_6H_{12}/CH_2Cl_2/(C_2H_5)_2O$ 4:3:3). Aus der ersten gelben Zone $(R_F 0.95)$ wurde 10, aus der zweiten $(R_F 0.90)$ wurde 4 mit CH₂Cl₂ eluiert; 10 wurde aus Methanol umkristallisiert. Ausb. 23 mg (8%), Schmp. 189.5°C.

> C₉H₁₂N₄S₄ (304.5) Ber. C 35.5 H 3.98 N 18.4 S 42.1 Gef. C 35.5 H 3.96 N 18.4 S 41.7

CAS-Registry-Nummern

1: 87482-40-4 / 2: 103201-69-0 / 3: 103201-70-3 / 4: 103201-71-4 / 5: 103201-72-5 / 6: 103201-73-6 / 7: 103201-74-7 / 8: 103201-75-8 / 9: 103201-76-9 / 10: 103201-77-0 / [(C₆H₅)₃PCH₃]Br: 1779-49-3 / [(CH₃)₃O][BF₄]: 420-37-1

- ¹⁾ G. Süß-Fink, G. Herrmann und U. Thewalt, Angew. Chem. 95, 899 (1983); Angew. Chem., Int. Ed. Engl. 22, 880 (1983); Angew. Chem. Suppl. 1983, 1203.
- ²⁾ G. Herrmann und G. Süß-Fink, Chem. Ber. 118, 3959 (1985).
- ³⁾ G. Herrmann und G. Süß-Fink, Synthesis 1986, 422.
- ⁴⁾ G. Wittig und U. Schöllkopf, Chem. Ber. 87, 1318 (1954). ⁵⁾ G. Wittig, Angew. Chem. 68, 505 (1956).
- ⁶⁾ W. Kantlehner, U. Dinkeldein und H. Bredereck, Liebigs Ann. Chem. 1979, 1346.
- ⁷⁾ W. Kantlehner, U. Dinkeldein und H. Bredereck, Liebigs Ann. Chem. 1979, 1354.
- ⁸⁾ D. Seebach und A. K. Beck, Chem. Ber. 105, 3892 (1972).
- 9) E. Fischer, Ber. Dtsch. Chem. Ges. 30, 3011 (1897).
- ¹⁰⁾ H. Biltz, Ber. Dtsch. Chem. Ges. 44, 294 (1911).
- ¹¹⁾ T. J. Curphey, Org. Synth. 51, 142 (1971).
- ¹²⁾ U. Schöllkopf, Angew. Chem. 71, 260 (1959).

[73/86]